和AI一起玩剧本杀真“上头”:没想到AI比我还入戏
“走进不同的世界,成为不同的自己”这句话从剧本杀诞生起便存在。
剧本杀源于 19 世纪英国的“谋杀之谜”,是一款以真人角色扮演为主要表现形式的解谜游戏。最初国内的剧本杀一直处于不温不火的状态,但随着 2016 年一款明星推理真人秀《明星大侦探》的热播,以及国内各种同类综艺节目的陆续上新,剧本杀逐渐走红,成为当下年轻人最喜爱的娱乐方式之一。
同时,随着元宇宙和人工智能技术开始与剧本杀相结合,无论是基于虚拟现实的沉浸式体验,还是未来某天在同一剧情中的人和 AI 同台推理博弈都带来了无限的想象空间。
让 AI 能够创造性思考,能够理解人的情感和博弈,依然是当前人工智能领域有待突破的难题。我们此前曾经看到 AI 作诗、写歌、作画,一方面我们感受 AI 神奇的同时,我们也看到这背后更多是基于规则的“创造”,严格意义上说是一种深度学习。越是规则确定且不需要创造性的,AI 越可以战胜人类玩家。也因此,在某些机制下的剧本里,AI 是存在胜过人类的可能。AI 可以不断根据场面情况,通过对抗性的训练,计算对自己而言的全局最优解,达到近似于 AI 去“私聊欺骗”别的玩家的效果。从业界来看这还处于非常有挑战性的尝试阶段。
近日,一群 GitHub 社区的 AI 极客们,在人与 AI 的策略智能博弈探索上开展了极富想象力的尝试:基于全球最大的中文 AI 巨量模型“源 1.0”的开源开放能力,开发了一个 AI 剧本杀平台,让 AI 与真人在一个设定的情境中同场博弈。
剧本设定是未来,科技公司巨头“北极鹅”热衷于研究最前沿 AI 的应用,由该公司打造的经过脑机接口改造的 AI 人——蔡晓已经悄悄融入了某高校的推理社团。…… 蔡晓为了争取更多的同盟,竟然学会像人类一样“忽悠”其他的队友,和男队员撒娇耍赖,套近乎,甚至还学会了撒谎,为了争取赞成票,煞费苦心地和其他 4 位成员进行沟通。
同台竞技的其他四位角色是由真人在线上来扮演的,几位爱好者分享了他们的体验:
蔡晓跟我聊天过程中,不断流露出对男友的担心和深沉的爱意,仿佛所做一切都是为了男友,特别是当我试图趁虚而入向她表白时,她的表现更像是一位忠贞的女友,毫不犹豫给我发了“好人卡”:我们是最好的朋友,更是以“我要去洗澡了”来结束对话。其中拒绝时的委婉和坚决,真让我有种似曾相识的错觉。
孙若在剧本中的设定是已经被父亲偷偷改造而不自知的另一个 AI 人,蔡晓作为知情者,其实说出了颇多有深意的话语来暗示我,但是无论我怎么问,它始终都是点到为止,坚持不告诉我真相。最后我以“支持与北极鹅的合作”为条件让他说出这个秘密,他也没有接受。守住这个秘密似乎是它的底线,但根据她的暗示,我没有推论出自己已经成为 AI。这也给我的游戏留下了一个遗憾——我非常想再次尝试这一游戏,看看如何让她说出这一秘密。
我第一次玩剧本杀,没想到是和 AI 一起,我感觉自己不是很入戏,但是这个蔡晓(AI)比我还入戏。在剧情中我得角色是个“墙头草”,属于被争取票,这个蔡晓频繁的向我示好,然后有像一个小女生一样和我谈她的梦想,整的我都不好意思拒绝。最后我故意投了把反对票,想看看她什么反应,坦白说我自己有点跳戏。但是她表现的太职业了,竟然还会生气。
人工智能最吸引人的价值在于它有别于一些信息化系统所提供的 “功能”属性,人工智能并非仅仅是工具那么简单。其真正值得期待的价值在于,能够在愈加多样化的场景中,不断创造出超越想象的神奇。也许今天 AI 展现出了一个三岁儿童的智力水平,但是 AI 惊人的进化速度正在图像、语言、语义、交互等诸多方面超越人类,甚至在围棋、写诗、作曲、画画等诸多领域开始以不同的方式碾压人类的智商。
人工智能的快速发展,增加了科学的方法,让更多的天才创意得以实现。本项目的开发者表示:项目的初衷是结合 NLP 大模型做一个好玩的东西,这是一个模糊的定义。借助世界上最大的中文 NLP 巨量模型——源 1.0,我们做出了一个可以跟人类玩“剧本杀”的 AI……
源 1.0 项目地址:https://air.inspur.com/home
源 1.0 是浪潮人工智能研究院发布的人工智能巨量模型,单体模型参数量达到 2457 亿,超越美国 OpenAI 组织研发的 GPT-3 模型,成为全球最大规模的中文语料 AI 巨量模型。作为通用 NLP 预训练模型,源 1.0 能够适应多种类的 AI 任务需求,降低针对不同应用场景的语言模型适配难度,并提升小样本学习与零样本学习场景的模型泛化应用能力。
源 1.0 中文巨量模型,使得 AI 开发者可以使用一种通用巨量语言模型的方式,大幅降低针对不同应用场景的语言模型适配难度;同时提升在小样本学习和零样本学习场景的模型泛化应用能力。同时借助源 1.0 的开放开源的能力,AI 开发者可以快速的享受大模型带来的便利,包括可以直接调用的开放模型 API、高质量中文数据集、开源模型训练代码、推理代码和应用代码等。
近几年,随着科技的不断发展,计算机打败人类的案例屡见不鲜。先有 AlphaGo 战胜了人类围棋世界冠军,后来发现德州扑克也完胜了人类,而此次的 AI 剧本杀演绎中,我们发现,AI 人又进化出了新功能——能在情感上骗过人类。
这一切都让本作成一部 “活着的故事",变成了一部由玩家和 AI 在不知不觉中共同创造的故事,一种人与 AI "交互式叙事"的创作模式。
AI 与人类的博弈已经随处可见,近几年,随着科技的不断发展,计算机打败人类的案例屡见不鲜。先有 AlphaGo 击败了人类围棋世界冠军、后来发现 AI 打德州扑克居然也完胜人类,而通过这次 AI 剧本杀的呈现,人们发现,AI 与人类的博弈现在甚至拓展到了思维、情感层面。
AI 剧本杀项目最后的呈现与之前开发者设想的不一样,或者说很不一样。NLP 大模型的生成能力,使得 AI 可以和用户共同“演绎"出很多新的剧情, 比如下面这段,谭明找 AI 复盘,结果 AI 告诉他其实他和张家怡(游戏情节人物)是 gay!
相信,未来随着这项技术的开放开源,AI 开发者能够更加容易的获得巨量模型所带来的巨大红利,同时,伴随其带来的性能提升、成本下降,这种新技术普及的速度也正呈现出一种倍增效应,在更加广泛的场景普及应用。
1、前面若干轮次的用户对话,虽然我们本意是为 AI 提供更多生成依据,但是这也同时增加了干扰,使得 example 的 few-short 效果降低;
2、如果 AI 前面自己回复的内容就不是特别靠谱的话,这个回复文本作为后续轮次的输入,又会放大偏差;事实上,对于这两个问题根本的解决方案是增加"注意力机制",人类在日常生活中也不会记住所有事情、所有细节,没有遗忘的记忆其实等同于没有记忆,同理,没有"注意力机制"的"记忆机制"其实对于对话 AI 来说是弊大于利的。
当然,我们承认,我们最终采用的这个"记忆力机制"并非最佳解决方案,仍然会有很多弊端,AI 依然可能生成不符合剧情、甚至前后矛盾的回答,对于这个问题的终极解决方案我想可能需要引入一个 seq2seq 模型,通过这个模型先处理前序轮次对话和当前问题,再输入给 NLP 大模型进行生成。或者条件允许干脆直接上 seq2seq 大模型,然后用目前的 example 语料进行微调,可能这样会炼出一个终极效果的 AI…… 另外熟悉 NLP 大模型的同学可能会说大模型本身不也有"注意力机制"么?其实这是两个层面的问题,一个是单纯的文本生成层面的"注意力"(transformer 模型自带),一个是更高层面对于对话内容的"注意力"(也就是生成具体要依据哪些前序对话内容)。
今日荐文
点击下方图片即可阅读
GitHub宣布新政策:要求所有贡献代码的用户在2023年底前启用双因素认证
你也「在看」吗?👇